
.NET Concepts: Services
Release

Oct 28, 2017

Contents:

1 Getting Started 3
1.1 Create Service . 3
1.2 Create Bootstrap . 3
1.3 Run the service . 4

2 Service Host 5
2.1 Hosting ASP.NET Core . 5

3 RabbitMQ 7

i

ii

.NET Concepts: Services, Release

.NET Concepts: Services are concept libraries made to inspire a better structure for C# services.

Contents: 1

.NET Concepts: Services, Release

2 Contents:

CHAPTER 1

Getting Started

Create Service

A service is defined by implementing a class derived from Service. The method StartAsync will be called
when the service is started, and can be considered as the entry point to the service. Optionally, StopAsync can be
overridden to implement clean up activities, like disposing services.

public class TimeService : Service
{

private readonly IWorldClock _clock;
private Timer _timer;

public TimeService(IWorldClock clock)
{
_clock = clock;

}

public override async Task StartAsync(CancellationToken ct =
→˓default(CancellationToken))
{
_timer = new Timer(time =>
{

Log.Information("It is {timeOfDay}, and all is well", _clock.GetTime());
}, null, TimeSpan.Zero, TimeSpan.FromSeconds(10));

}
}

Create Bootstrap

The IServiceBootstrap is responsible for configuring the applicatoin logger and wire-up the dependency injec-
tion container. It is not primed to any specific frameworks, as the interface only contains hooks. For convinience, there
are implementations that wire up different populare libraries.

3

https://github.com/pardahlman/dotnet-concepts-services/blob/master/src/Concept.Service/ServiceBootstrap.cs#L7

.NET Concepts: Services, Release

The OpinionatedServiceBootstrap configures a Serilog logger and creates an Autofac container to register
services in.

public class TimeBootstrap : OpinionatedServiceBootstrap<TimeService>
{

public override ServiceMetadata CreateMetadata()
{
return new ServiceMetadata
{

Type = typeof(TimeService),
Name = nameof(TimeService),
Description = "Tells the time"

};
}

protected override void RegisterDependencies(ContainerBuilder builder)
{
builder

.RegisterType<WorldClock>()

.AsImplementedInterfaces();
builder

.RegisterType<TimeService>()

.AsSelf();
}

}

Run the service

The service can be run in a few different ways. The most straight forward option is to use the ConsoleRuner

public class Program
{

public static void Main(string[] args)
{

MainAsync(args).GetAwaiter().GetResult();
}

public static async Task MainAsync(string[] args)
{

await ConsoleRunner.StartAsync(new TimeBootstrap());
}

}

The console runner is a great option for running services on .NET Core in Docker containers. On a Windows system,
the TopshelfRunner can be used to run the service as an actual Windows Service

TopshelfRunner.Start(new TimeBootstrap());

There are more sophisticated ways to run a service, that allows hybrid services that runs an ASP.NET Core API as
well as a traditional service. This is achieved by using the ServiceHost and related classes.

4 Chapter 1. Getting Started

https://serilog.net/
https://autofac.org/
https://www.docker.com/

CHAPTER 2

Service Host

The ServiceHost is heavely inspired by the WebHost classes, used to configure ASP.NET Core applications.

A service host is created by defining a ServiceHostBuilder, configuring it and finally building the host.

var serviceHost = new ServiceHostBuilder(new TimeBootstrap())
.UseConsoleHost()
.Build();

await serviceHost.RunAsync();

Hosting ASP.NET Core

The package Concept.Service.AspNetCore contains classes that makes it possible to host an ASP.NET appli-
cation together with the service. This can be great in a microservice architecture where each service exposes an API
as well as underlying, event based business logic.

Getting up and running is fairly easy. Make sure that the bootstrap inherits from AspNetCoreBootstrap. This is
an extended bootstrap that, in addition to normal bootstrapping, contains methods similar to the ones in the Startup
class.

public class FooBootstrap : AspNetCoreBootstrap<FooService>
{

public override void ConfigureServices(IServiceCollection services)
{
services

.AddSingleton<FooService>()

.AddLogging()

.AddMvc();
}

public override void ConfigureAppConfiguration(IConfigurationBuilder configuration)
{
configuration.AddJsonFile("appsettings.json");

5

.NET Concepts: Services, Release

}

public override void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
if (env.IsDevelopment())

app.UseDeveloperExceptionPage();

app.UseMvc();
}

}

With the updated bootstrapper, the service host builder can define multiple hosts

public static async Task MainAsync(string[] args)
{

var host = new ServiceHostBuilder(new OpinionatedFooBootstrap())
.UseConsoleHost()
.UseWebHost()
.Build();

await host.RunAsync();
}

6 Chapter 2. Service Host

CHAPTER 3

RabbitMQ

RabbitMQ is a populare message broker for distributed systems. The package Concept.Service.RabbitMq
contains RabbitMqService that has methods for subscribing and publishing messages. It uses RawRabbit under
the hood.

public class FooService : RabbitMqService
{

public FooService(IBusClient busClient) : base(busClient) { }

public override async Task StartAsync(CancellationToken ct =
→˓default(CancellationToken))
{
// Method in base class
await SubscribeAsync<PerformFoo>(HandleFooAsync, ct: ct);

}

private async Task HandleFooAsync(PerformFoo message, ConceptContext context)
{
/* Handle message */
// Method in base class
await PublishAsync(new FooPerformed {Success = true});

}
}

7

https://www.rabbitmq.com/
https://github.com/pardahlman/RawRabbit

	Getting Started
	Create Service
	Create Bootstrap
	Run the service

	Service Host
	Hosting ASP.NET Core

	RabbitMQ

